

African Journal of Biotechnology

OPEN ACCESS

May 2015 Vol. 14 Num. 18

www.academicjournals.org

Table of Content: 6 May, 2015; 14(18)

- *2015 May*
- **A review on marine based nanoparticles and their potential applications**

DOI: 10.5897/AJB2015.14527[Article Number: 8AB382952706]

Chinnappan Ravinder Singh, Kandasamy Kathiresan and Sekar Anandhan

[Abstract](#)[Full-Text PDF](#)

The increasing demands on nanoparticles have wide pertinent in almost all the fields. Marine ecosystem has variety of living resources, which includes prokaryotes like microorganism to eukaryotic organism like higher plants and animals. The present review dealt with the application of marine organisms in nanotechnology. Our discussion mainly focused on what the marine organisms are involved in and what type of... [Read more.](#)

- *2015 May*
- **The use of multiplexed simple sequence repeat (SSR) markers for analysis of genetic diversity in African rice genotypes**

DOI: 10.5897/AJB2015.14478[Article Number: 9E756EA52708]

Bonny M. Oloka, , Jimmy Lamo, Patrick Rubaihayo, Paul Gibson and Juan Vorster

[Abstract](#)[Full-Text PDF](#)

Rice is an emerging food and cash crop in Eastern Africa. Thousands of germplasm accessions have been introduced from major rice breeding centers, such as the International Rice Research Institute (IRRI), and Africa Rice but the genetic variability among the introduced rice germplasm is unknown. Knowledge on genetic diversity would be useful in designing measures for comprehensive breeding and conservation. To address... [Read more.](#)

- *2015 May*
- **Molecular diversity study of black cumin (*Nigella sativa L.*) from Ethiopia as revealed by inter simple sequence repeat (ISSR) markers**

DOI: 10.5897/AJB2015.14567[Article Number: FC7397852709]

Birhanu Kapital, Tileye Feyissa, Yohannes Petros and Said Mohammed

[Abstract](#)[Full-Text PDF](#)

Nigella sativa L. (commonly known as black cumin) belonging to family Rannunculaceae is an important medicinal plant with worldwide distribution. In Ethiopia, *N. sativa* occurs in all regions and agro-ecologies at different altitudinal ranges. This plant has a lot of importance in Ethiopia. However, there is no information available on molecular genetic diversity of this crop in respect to Ethiopia. Therefore, the aim of... [Read more.](#)

- *2015 May*
- [**Inter simple sequence repeat \(ISSR\) analysis of Ethiopian white lupine \(*Lupinus albus* L.\)**](#)

DOI: 10.5897/AJB2014.14379[Article Number: A050C1F52710]

Abdie Oumer, Petros Yohannes, Tesfaye Kassahun, Teshome Abel and Bekele Endashaw

[Abstract](#)[Full-Text PDF](#)

White lupine (*Lupinus albus* L.) collected from two zones (West Gojjam and Awi) of Amhara region and one zone (Metekel) of Benishangul - Gumuz regional state of Ethiopia were studied using inter simple sequence repeat (ISSR) markers in an attempt to assess the genetic diversity. Four ISSR primers of which three were dinucleotide repeats and one, a penta nucleotide repeat amplified a total of 39 clear and reproducible... [Read more.](#)

- *2015 May*
- [**Genotype x environment interaction and stability analysis for yield and yield related traits of Kabuli-type Chickpea \(*Cicer arietinum* L.\) in Ethiopia**](#)

DOI: 10.5897/AJB2014.14320[Article Number: EB941A052712]

Getachew Tilahun Firew Mekbib, Asnake Fikre and Million Eshete

[Abstract](#)[Full-Text PDF](#)

Chickpea is the major pulse crop cultivated in Ethiopia. However, its production is constrained due to genotype instability and environmental variability. This research was carried out to examine the magnitude of environmental effect on yield of chickpea genotypes and to investigate the stability and adaptability of genotypes under different agro-ecologies. Seventeen (17) genotypes were evaluated in randomized complete... [Read more.](#)

- *2015 May*

- **Effects of the humic acid extracted from vermicompost on the germination and initial growth of Brachiaria brizantha cv. MG5**

DOI: 10.5897/AJB2015.14443[Article Number: C69E66352713]

Mariá Moraes Amorim, Henrique Duarte Vieira, Isabela Moraes Amorim, Leonardo Barros Dobbss, Bruno Borges Deminicis and Priscilla Brites Xavier

[Abstract](#)[Full-Text PDF](#)

The biological effects of humic substances on vegetables depend on the source of extraction and the concentration used, on the vegetable species and on the age of the plant. This study aimed to evaluate the effect of different humic acid (HA) doses extracted from vermicompost on the germination and initial growth of Brachiaria brizantha cv. MG5. To that end, germination tests were conducted in germination agents, as... [Read more](#).

- *2015 May*
- **Effect of alkaline treatment on the sulfate content and quality of semi-refined carrageenan prepared from seaweed *Kappaphycus alvarezii* Doty (Doty) farmed in Indian waters**

DOI: 10.5897/AJB2014.14203[Article Number: E38190A52714]

J. Moses, R. Anandhakumar and M. Shanmugam

[Abstract](#)[Full-Text PDF](#)

Seaweed *Kappaphycus alvarezii* previously known as *Eucheuma cottonii* is one of the best sources of kappa carrageenan and is cultivated in Philippines, Indonesia, Malaysia and other countries including India. In the present study, semi-refined carrageenan (SRC) was prepared from *K. alvarezii* with different concentrations of KOH (6, 12, 18 and 24%) at $80 \pm 2^\circ\text{C}$ for 2 h; its sulfate contents were... [Read more](#).

- *2015 May*
- **Modification of chitin as substrates for chitinase**

DOI: 10.5897/AJB2014.14178[Article Number: 6BAD6FC52716]

Nuniek Herdyastuti, Sari Edi Cahyaningrum, Mizan Tamimi and Adi Wirawan

[Abstract](#)[Full-Text PDF](#)

Enzymes are able to bind to their substrates specifically at the active site. The proximity and orientation of the substrates strongly increase the likelihood that productive E-S complexes will arise. Treated chitin (powder or flake) is more efficient than crystalline chitin. This is because

the latter is less active due to its insolubility. The structure of treated chitin is opened; this facilitates its... [Read more.](#)

- *2015 May*
- **Isolation of microalgae species from arid environments and evaluation of their potentials for biodiesel production**

DOI: 10.5897/AJB2014.14327[Article Number: A822FE552717]

Innocent Okonkwo Ogbonna and James Chukwuma Ogbonna

[Abstract](#)[Full-Text PDF](#)

Twenty-five (25) strains of microalgae were isolated and screened for growth, lipid accumulation and biodiesel production from arid environments of North East Nigeria. Isolates that produced biomass concentration (≥ 1.50 g L⁻¹ cell dry weight), accumulated high concentrations of lipids ($\geq 18\%$ of the cell biomass) and could be purified on agar plates were selected for further studies. Four strains morphologically... [Read more.](#)

Quick Links

Google Scholar h5-index: 35

SNIP indicator: 0.90

SCImago JR: 0.26

Abbreviation: Afr. J. Biotechnol.

Language: English

ISSN: 1684-5315

DOI: 10.5897/AJB

Start Year: 2002

Published Articles: 11323

Editors - AJB

Editor-In-Chief

Dr. George Nkem Ude

Department of Natural Sciences

Bowie State University

Bowie, MD

USA.

Dr. N. John Tonukari

Department of Biochemistry

Delta State University

Abraka,

Nigeria.

Editorial Board Members

Dr. Gunjan Mukherjee

Agharkar Research Institute (ARI),

Autonomous Institute of the Department of Science and Technology (DST) Government of India

Pune,

India.

Prof. Dr. A.E. Aboulata

Plant Pathology Research Institute (ARC)

Giza,

Egypt.

Dr. S. K. Das

Department of Applied Chemistry and Biotechnology

University of Fukui

Japan.

Prof. A. I. Okoh

Applied and Environmental Microbiology Research Group (AEMREG)
Department of Biochemistry and Microbiology
University of Fort Hare
Alice,
South Africa.

Dr. Ismail Turkoglu
Department of Biology Education
Education Faculty
Fırat University
Elazığ,
Turkey.

Prof. T. K. Raja
Department of Biotechnology
PSG College of Technology (Autonomous)
Coimbatore
India.

Dr. George Edward Mamati
Horticulture Department
Jomo Kenyatta University of Agriculture and Technology
Nairobi
Kenya.

Prof. Sagadevan G. Mundree
Department of Molecular and Cell Biology
University of Cape Town
Rondebosch,
South Africa.

Dr. Amlan Patra
Department of Animal Nutrition
West Bengal University of Animal and Fishery Sciences
India.

Dr. Maria J. Poblaciones
Department of Agronomy and Forest Environment Engineering
Extremadura University,
Spain.

Dr. Chong Wang
College of Animal Science
Zhejiang A&F University
China.

Dr. Martin Fregene
Centro Internacional de Agricultura Tropical (CIAT)
Cali,
Colombia.

Prof. O. A. Ogunseitan
Laboratory for Molecular Ecology
Department of Environmental Analysis and Design
University of California,
Irvine, CA
USA.

Dr. Ibrahima Ndoye
UCAD, Faculte des Sciences et Techniques
Departement de Biologie Vegetale
Laboratoire Commun de Microbiologie
IRD/ISRA/UCAD
Dakar,
Senegal.

Dr. Bamidele A. Iwalokun
Biochemistry Department
Lagos State University
Nigeria.

Dr. Jacob Hodeba Mignouna
Virginia State University
Agricultural Research Station
Petersburg, VA
USA

Dr. Bright Agindotan
Plant, Soil and Entomological Sciences Dept
University of Idaho,
Moscow, ID
USA.

Dr. A. P. Njukeng
Département de Biologie Végétale
Faculté des Sciences
Université de Dschang
Dschang,
Cameroun.

Dr. E. Olatunde Farombi
Drug Metabolism and Toxicology Unit

Department of Biochemistry
University of Ibadan
Ibadan,
Nigeria.

Dr. Stephen Bakiamoh
Michigan Biotechnology Institute International
Lansing, MI
USA.

Dr. N. A. Amusa
Institute of Agricultural Research and Training
Obafemi Awolowo University
Moor Plantation
Ibadan,
Nigeria.

Dr. Desouky Abd-El-Haleem
Environmental Biotechnology Department
Bioprocess Development Department
Genetic Engineering and Biotechnology Research Institute (GEBRI)
Mubarak City for Scientific Research and Technology Applications
Alexandria,
Egypt.

Dr. Simeon Oloni Kotchoni
Department of Plant Molecular Biology
Institute of Botany
University of Bonn
Bonn,
Germany.

Dr. Eriola Betiku
German Research Centre for Biotechnology
Biochemical Engineering Division
Braunschweig ,
Germany.

Dr. Daniel Masiga
International Centre of Insect Physiology and Ecology
Nairobi,
Kenya.

Dr. Essam A. Zaki
Genetic Engineering and Biotechnology Research Institute (GEBRI)
Alexandria,

Egypt.

Dr. Alfred Dixon
International Institute of Tropical Agriculture (IITA)
Ibadan,
Nigeria.

Dr. Sankale Shompole
Dept. of Microbiology, Molecular Biology and Biochemistry
University of Idaho
Moscow, ID
USA.

Dr. Mathew M. Abang
Germplasm Program
International Center for Agricultural Research in the Dry Areas (ICARDA)
Aleppo,
Syria.

Dr. Solomon Olawale Odemuyiwa
Pulmonary Research Group
Department of Medicine
Heritage Medical Research Centre
University of Alberta
Edmonton,
Canada.

Prof. Anna-Maria Botha-Oberholster
Department of Genetics
Forestry and Agricultural Biotechnology Institute
Faculty of Agricultural and Natural Sciences
University of Pretoria
Pretoria,
South Africa.

Dr. O. U. Ezeronye
Department of Biological Science
Michael Okpara University of Agriculture
Umudike,
Nigeria.

Dr. Joseph Hounhouigan
Maître de Conférence
Sciences et technologies des aliments
Faculté des Sciences Agronomiques
Université d'Abomey-Calavi

Cotonou
Bénin.

Prof. Christine Rey
Dept. of Molecular and Cell Biology
University of the Witwatersand
Johannesburg,
South Africa.

Dr. Kamel Ahmed Abd-Elsalam
Molecular Markers Lab. (MML)
Plant Pathology Research Institute (PPRI)
Agricultural Research Center
Giza,
Egypt.

Dr. Jones Lemchi
International Institute of Tropical Agriculture (IITA)
Onne,
Nigeria.

Prof. Greg Blatch
Department of Biochemistry, Microbiology & Biotechnology
Rhodes University
Grahamstown,
South Africa.

Dr. Jackie Hughes
Research for Development
International Institute of Tropical Agriculture (IITA)
Ibadan,
Nigeria.

Dr. Robert L. Brown
Southern Regional Research Center
U.S. Department of Agriculture
Agricultural Research Service
New Orleans, LA
USA.

Dr. Deborah Rayfield
Bowie State University
Department of Natural Sciences
Bowie, MD
USA.

Dr. Marlene Shehata
University of Ottawa Heart Institute
Genetics of Cardiovascular Diseases
Ottawa, ON
Canada.

Dr. Hany Sayed Hafez
The American University
Cairo,
Egypt.

Dr. Clement O. Adebooye
Department of Plant Science
Obafemi Awolowo University,
Ile-Ife,
Nigeria.

Dr. Ali Demir Sezer
Marmara Üniversitesi
Eczacılık Fakültesi
İstanbul,
Turkey.

Dr. Anant B. Patel
Centre for Cellular and Molecular Biology
Hyderabad,
India.

Prof. Arne Elofsson
Department of Biophysics, Biochemistry and Bioinformatics
Stockholm University
Sweden.

Prof. Bahram Goliaei
Departments of Biophysics and Bioinformatics
Laboratory of Biophysics and Molecular Biology
Institute of Biochemistry and Biophysics
University of Tehran
Tehran,
Iran.

Dr. Nora Babudri
Dipartimento di Biologia cellulare e ambientale
Università di Perugia
Via Pascoli,
Italy.

Dr. S. Adesola Ajayi
Seed Science Laboratory
Department of Plant Science
Faculty of Agriculture
Obafemi Awolowo University
Ile-Ife,
Nigeria.

Dr. Yee-Joo Tan
Department of Microbiology
Yong Loo Lin School of Medicine
National University Health System (NUHS),
National University of Singapore
Singapore.

Prof. Hidetaka Hori
Laboratories of Food and Life Science
Graduate School of Science and Technology
Niigata University
Niigata,
Japan.

Prof. Thomas R. DeGregori
University of Houston
Texas,
USA.

Dr. Wolfgang Ernst Bernhard Jelkmann
Medical Faculty
University of Lübeck
Germany.

Dr. Moktar Hamdi
Department of Biochemical Engineering
Laboratory of Ecology and Microbial Technology
National Institute of Applied Sciences and Technology
Tunisia.

Dr. Salvador Ventura
Department de Bioquímica i Biologia Molecular
Institut de Biotecnologia i de Biomedicina
Universitat Autònoma de Barcelona
Bellaterra,
Spain.

Dr. Claudio A. Hetz
Faculty of Medicine,
University of Chile
Santiago,
Chile.

Prof. Felix Dapare Dakora
Research Development and Technology Promotion
Cape Peninsula University of Technology
Cape Town,
South Africa.

Dr. Geremew Bultosa
Department of Food Science and Post harvest Technology
Haramaya University
Dire Dawa,
Ethiopia.

Prof. José Eduardo Garcia
Conservation Genetics and Evolution
Centro Acadêmico de Vitória
Universidade Federal de Pernambuco - UFPE
Rua Alto do Reservatório, s/n, Bela Vista,
Vitória de Santo Antão-PE. CEP: 55608-680
Brasil

Prof. Nirbhay Kumar
Malaria Research Institute
Department of Molecular Microbiology and Immunology
Johns Hopkins Bloomberg School of Public Health
Baltimore, MD
USA.

Prof. M. A. Awal
Department of Anatomy and Histplogy
Bangladesh Agricultural University
Mymensingh,
Bangladesh.

Prof. Christian Zwieb
Department of Molecular Biology
University of Texas Health Science Center
Tyler, TX
USA.

Prof. Danilo López-Hernández

Instituto de Zoología Tropical,
Facultad de Ciencias,
Universidad Central de Venezuela.
Institute of Research for the Development (IRD)
Montpellier,
France.

Dr. Ekhaise Osaro Frederick
University of Benin
Faculty of Life Science
Department of Microbiology
Benin,
Nigeria.

Dr. Luísa Maria de Sousa Mesquita Pereira
Institute of Molecular Pathology and Immunology at the University of Porto (IPATIMUP)
Porto,
Portugal.

Dr. Min Lin
Animal Diseases Research Institute
Canadian Food Inspection Agency
Ottawa, ON
Canada.

Prof. Nobuyoshi Shimizu
Department of Molecular Biology
Center for Genomic Medicine
Keio University School of Medicine
Tokyo,
Japan.

Dr. Adewunmi Babatunde Idowu
Department of Biological Sciences
University of Agriculture
Abia,
Nigeria.

Dr. Yifan Dai
Revivicor Inc.
Pittsburgh, PA
USA.

Prof. Giuseppe Novelli
Department of Biopathology
Tor Vergata University

Rome,
Italy.

Prof. Jean-Marc Sabatier
Ingénierie des Peptides à Visée Thérapeutique,
Université de la Méditerranée-Ambrilia Biopharma Inc.
Faculté de Médecine Nord,
Marseille,
France.

Dr. Fabian Hoti
PneumoCarr Project
Department of Vaccines
National Public Health Institute
Finland.

Prof. Irina-Draga Caruntu
Department of Histology
Gr. T. Popa University of Medicine and Pharmacy
Iasi,
Romania.

Dr. Dieudonné Nwaga
Soil Microbiology Laboratory
Biotechnology Center
Plant Biology Department
University of Yaoundé I
Yaoundé,
Cameroon.

Dr. Gerardo Armando Aguado-Santacruz
Biotechnology CINVESTAV-Unidad Irapuato
Departamento Biotecnología
Guanajuato,
Mexico.

Dr. Abdolkaim H. Chehregani
Department of Biology
Faculty of Science
Bu-Ali Sina University
Hamedan,
Iran.

Dr. Abir Adel Saad
Department of Biotechnology
Institute of Graduate Studies and Research

Alexandria University
Egypt.

Dr. Azizul Baten
Department of Statistics
Shah Jalal University of Science and Technology
Sylhet,
Bangladesh.

Dr. Bayden R. Wood
Australian Synchrotron Program
School of Chemistry
Monash University
Victoria,
Australia.

Dr. G. Reza Balali
Department of Biology
University of Isfahan
Isfahan,
Iran.

Prof. H. Sunny Sun
Institute of Molecular Medicine
National Cheng Kung University Medical College
Tainan,
Taiwan. (R.O.C.)

Prof. Ima Nirwana Soelaiman
Department of Pharmacology
Faculty of Medicine
Universiti Kebangsaan Malaysia
Kuala Lumpur,
Malaysia.

Prof. Tunde Ogunsanwo
Faculty of Science
Olabisi Onabanjo University
Ago-Iwoye,
Nigeria.

Dr. Evans C. Egwim
Federal Polytechnic
Bida Science Laboratory Technology Department
Bida,
Nigeria.

Prof. George N. Goulielmos
Medical School
University of Crete
Crete,
Greece.

Dr. Uttam Krishna
Cadila Pharmaceuticals Limited
Gujarat,
India.

Prof. Mohamed Attia El-Tayeb Ibrahim
Botany Department
Faculty of Science
South Valley University
Qena,
Egypt.

Dr. Nelson K. Ojijo Olang'o
Department of Food Science & Technology
Jomo Kenyatta University of Agriculture and Technology (JKUAT)
Nairobi,
Kenya.

Dr. Pablo Marco Veras Peixoto
University of New York
NYU College of Dentistry
New York, NY
USA.

Prof. T. E. Cloete
Department of Microbiology and Plant Pathology
University of Pretoria
Pretoria,
South Africa.

Prof. Djamel Saidi
Laboratoire de Physiologie de la Nutrition et de Sécurité
Alimentaire Département de Biologie
Faculté des Sciences
Université d'Oran
Algeria.

Dr. Ulises Urzúa
Faculty of Medicine,

University of Chile
Santiago,
Chile.

Dr. Aritua Valentine
National Agricultural Biotechnology Center
Kawanda Agricultural Research Institute (KARI)
Kampala,
Uganda.

Prof. Viroj Wiwanitkit
Department of Laboratory Medicine
Faculty of Medicine
Chulalongkorn University
Bangkok,
Thailand.

Dr. Thomas Silou
University of Brazzaville
Congo.

Prof. Burtram Clinton Fielding
University of the Western Cape
Western Cape,
South Africa.

Dr. Meltem Sesli
College of Tobacco Expertise
Celal Bayar University
Manisa,
Turkey.

Dr. Idress Hamad Attitalla
Omar El-Mukhtar University
Faculty of Science,
Botany Department
El-Beida,
Libya.

Dr. Linga R. Gutha
Washington State University
Prosser, WA
USA.

Dr. Vipul Gohel
DuPont Industrial Biosciences

Danisco (India) Pvt Ltd
Haryana
India.

Dr. Sang-Han Lee
Department of Food Science & Biotechnology
Kyungpook National University
Daegu,
Korea.

Dr. Bhaskar Dutta
Biotechnology High Performance Computing Software Applications Institute (BHSAl)
U.S. Army Medical Research and Materiel Command
Frederick, MD
USA.

Dr. Muhammad Akram
Faculty of Eastern Medicine and Surgery
Hamdard Al-Majeed College of Eastern Medicine
Hamdard University
Karachi.

Dr. M. Muruganandam
Department of Biotechnology
St. Michael College of Engineering & Technology
Kalayarkoil,
India.

Dr. Gökhan Aydin
Suleyman Demirel University
Atabey Vocational School
Isparta
Türkiye.

Dr. Rajib Roychowdhury
Centre for Biotechnology (CBT)
Visva Bharati,
India.

Dr. Takuji Ohyama
Faculty of Agriculture
Niigata University
Niigata,
Japan.

Dr. Mehdi Vasfi Marandi

University of Tehran
Iran.

Dr. Fügen Durlu-Özkaya
Gazi University
Dept. of Gastronomy and Culinary Art
Ankara,
Turkey.

Dr. Reza Yari
Islamic Azad University
Tehran,
Iran.

Dr. Zahra Tahmasebi Fard
Islamic Azad University
Tehran,
Iran.

Dr Ping Zheng
Zhejiang University
Hangzhou
China.

Dr. Kgomotso P. Sibeko
University of Pretoria
South Africa.

Dr. Greg Spear
Rush University Medical Center
Chicago, IL
USA.

Prof. Pilar Morata
University of Malaga
Malaga,
Spain.

Dr. Jian Wu
Harbin Medical University
China.

Dr. Hsiu-Chi Cheng
National Cheng Kung University and Hospital
Taiwan. (R.O.C.)

Prof. Pavel Kalac
University of South Bohemia
Czech Republic

Dr Kürsat Korkmaz
Ordu University
Faculty of Agriculture
Department of Soil Science and Plant nutrition
Ordu,
Turkey.

Dr. Shuyang Yu
Department of Microbiology
University of Iowa
Iowa City, IA
USA.

Dr. Mousavi Khanegah
College of Applied Science and Technology
Department of Applied Food Science
Tehran,
Iran.

Dr. Qing Zhou
Department of Biochemistry and Molecular Biology
Oregon Health and Sciences University Portland
Portland, OR
USA.

Dr. Legesse Adane Bahiru
Department of Chemistry
Jimma University
Ethiopia.

Dr. James John
School of Life Sciences
Pondicherry University
Kalapet,
India.

Dr. Ramesh B Narasingappa
Division of Biotechnology
University of Agricultural Sciences (UAS)
Agricultural College
Bangalore,
India.

Dr. Prabhat Kumar Singhal
Center for Computational and Integrative Biology (CCIB)
Department of Genetic
Massachusetts General Hospital/Harvard Medical School
USA.

Dr. Muruganantham Mookkan
Division of Plant Sciences
University of Missouri
Columbia,
USA.

Dr. Lixia Zhao
Cell and Molecular Physiology
Loyola University Medical Center
USA.

Dr. Elsayed Ziedan
National Research Centre
Plant Pathology Department
Dokki,
Egypt.

Prof. Hazim Jabbar Al-Daraji
University of Baghdad
College of Agriculture
Baghdad,
Iraq.

Dr. Vijay Kumar Garlapati
Department of Biotechnology and Bioinformatics
Jaypee University of Information Technology
Waknaghat,
India.

Dr. Harsh Kavi
Albert Einstein College of Medicine
Bronx, NY
USA.

Dr. Berhanu Abraha
Biology Department
Bahir Dar University
Ethiopia.

Dr. Fazal Shirazi
Infectious Disease Department
The University of Texas
MD. Anderson Cancer Center
USA.

Dr. Yi Zhu
Internal Medicine Department
UT Southwestern Medical Center
Dallas,
USA.

Dr. Wen-Li Du
National Heart, Lung, and Blood Institute
National Institutes of Health (NIH)
Bethesda,
USA.

Dr. Lei Wang
Max Planck Institute for Heart and Lung Research
Dept. of Pharmacology
Bad Nauheim,
Germany.

Dr. Shrawan Mishra
The Hormel Institute
University of Minnesota
Austin, MN
USA.

Dr. Dipnarayan Saha
Biotechnology Unit, Division of Crop Improvement
Central Research Institute for Jute and Allied Fibres
(Indian Council of Agricultural Research)
Barrackpore,
India.

Dr. Imad Hadi
Babylon University
Faculty of Science
Biotechnology Department
Iraq.

Dr. Vincenzo Tufarelli
Department of Emergency and Organ Transplant (DETO)
Section of Veterinary Science and Animal Production

University of Bari “Aldo Moro”
Italy.

Dr. Carmelo Peter Bonsignore
Department PAU – Laboratorio di Entomologia ed Ecologia Applicata
Mediterranean University of Reggio Calabria
Italy.

Dr. Christophe Brugidou
Research Institute for Development (IRD) Center
France.

Dr. Preejith Vachali
School of Medicine
University of Utah
USA.

Dr. Balabhadrapatruni V.S.K. Chakravarthi
Michigan Center for Translational Pathology
Dept of Pathology
University of Michigan
Ann Arbor,
USA.

Dr. Srećko Trifunović
Department of Chemistry
Faculty of Science
University of Kragujevac
Serbia.

Dr. Huda El-Sheshtawy
Biotechnological Application lab., Process, Design and Development
Egyptian Petroleum Research Institute (EPRI)
Cairo,
Egypt.

Dr. Sekhar Kambakam
Department of Agronomy
Iowa State University
USA.

Dr. Desobgo Zangue Steve Carly
Food Processing and Quality Control
University Institute of Technology
(University of Ngaoundere)
Cameroon.

Dr. Girish Kamble
Botany Department
SRRL Science College Morshi
India.

Dr. Zhiguo Li
School of Chemical Engineering
University of Birmingham
UK.

Dr. Alok Pandey
Pharmacology and Physiology
New Jersey Medical School
Rutgers University,
USA.

Dr. Ajit Waman
Division of Horticulture and Forestry
ICAR- Central Island Agricultural Research Institute
Port Blair,
India.

Dr. Bidyut Saha
Chemistry Department
Burdwan University
WB,
India.

Dr. Karthik Rajendran
Department of Resource Recovery
University of Boras
Sweden.

Dr. Rachana Bhatt
New Jersey Institute of Technology
Newark, NJ,
USA.

Dr. Ashraf El-Kereamy
Agriculture and Natural Resources (ANR)
University of California,
USA.

Dr. Ram Prasad
Amity Institute of Microbial Technology

Amity University
India.

Dr. Vijay Kumar Eedunuri
Department of Cellular And Structural Biology
UT health Science Center
San Antonio,
USA.

Dr. Mahmoud Mohammed
Department of Food Hygiene
Faculty of Veterinary Medicine
Mansoura University
Egypt.

Dr. K.V. Madhusudhan
Botany Department
Government College
Kurnool,
India.

Prof. Naziha Hassanein
Department of Microbiology
Faculty of Science
Ain Shams University
Egypt.

Dr. Shashi Kumar
Synthetic Biology and Biofuels
Institution International Center for Genetic Engineering and Biotechnology
India.

Dr. S. Ahmed John
Department of Botany
Jamal Mohamed College (autonomous)
Tiruchirappalli,
India.

Dr. Jitendra Kumar Saini
Indian Oil Corporation Ltd.
Research & Development Centre
Faridabad,
India.

AJB - Abstracting & Indexing
The African Journal of Biotechnology is indexed in:

ABC-Chemistry

Abstracts on Hygiene and Communicable Diseases

Access to Global Online Research in Agriculture (AGORA)

Agricultural Engineering Abstracts

Agroforestry Abstracts

AJOL

Animal Breeding Abstracts

Animal Science Database

Biocontrol News and Information

Biofuels Abstracts

Botanical Pesticides

CAB Abstracts

CABI's Environmental Impact

Chemical Abstracts

Crop Physiology Abstracts

Crop Science Database

Dairy Science Abstracts

DOAJ

Entomology Abstracts

Environmental Sciences and Pollution Management

EVISA

EZB

Field Crop Abstracts

Forest Products Abstracts

Forest Science Database

Forestry Abstracts

Genamics Journal Seek

Google Scholar

Grasslands and Forage Abstracts

Helminthological Abstracts

HINARI

Horticultural Science Abstracts

Irrigation and Drainage Abstracts

Leisure, Recreation and Tourism Abstracts

Maize Abstracts

Medbioworld

Nematological Abstracts

Online Access to Research in the Environment

Scientific Information Database

Scopus

TEEAL

WorldCat

Full Length Research Paper

Modification of chitin as substrates for chitinase

Nuniek Herdyastuti*, Sari Edi Cahyaningrum, Mizan Tamimi and Adi Wirawan

Department of Chemistry, Surabaya State University, Jl. Ketintang Surabaya, Indonesia.

Received 11 September, 2014; Accepted 27 April, 2015

Enzymes are able to bind to their substrates specifically at the active site. The proximity and orientation of the substrates strongly increase the likelihood that productive E-S complexes will arise. Treated chitin (powder or flake) is more efficient than crystalline chitin. This is because the latter is less active due to its insolubility. The structure of treated chitin is opened; this facilitates its interaction with the enzyme. The purpose of this research was to create a kind of modified chitin and study the characterization of the different types of chitin including functional groups by IR spectrophotometer, pore size, surface area and crystallinity by X-Ray diffraction. Chitin from shrimp shell was modified into colloidal, bead, amorphous and superfine chitin. The results of the IR spectra of colloidal and bead chitin showed a similar pattern with chitin powder; they peaked at 3447 and 3113 cm^{-1} (OH and NH_2 groups), 1645 cm^{-1} (amide groups N-H) and 1071 cm^{-1} (group C-O). Superfine and amorphous chitin had similar absorbance with powder chitin but appeared to peak in the fingerprint region. Characterization of physical properties based on the pore size and surface area of powder, colloidal, superfine, amorphous and bead chitin changed the pore radius of each type of chitin due to the treatment of swelling. Crystallinity showed that specific diffractogram pattern in the three main peaks 2θ was 9.5, 19.5 and 26 with varying intensity. Chitinase activity assay using modified types of chitin substrate had higher values than chitin powder. The highest activity was in amorphous chitin with values of 1.858 U/mL. This is because it has chitin chain and the rearrangement of its structure was more open, facilitating its interaction with enzyme.

Key words: Chitin modified, chitinase, substrate.

INTRODUCTION

Chitin is a polymer that is very abundant in nature and is second only to cellulose. It is widely spread in nature as in fungi, algae, nematodes, arthropods, molluscs, plants and animals (Guo et al., 2004). So far, it has been found that it has very little large-scale industrial use because of its extreme insolubility; it cannot be absorbed or digested directly in the gastrointestinal tract (Dai, 2011).

Chitin structure has three forms, namely α , β and γ . α -Chitin is a form of a dense structure isomorphous having strong hydrogen bonds. β -Chitin has a structure with weaker intramolecular bonds but slightly more stable than α -chitin. γ -Chitin is a combination of α and β chitin structure. α -Chitin structure causes the chitin not to be soluble in the solvent, while β -chitin can be swollen in water, as

*Corresponding author. E-mail: nuniekherdyastuti@gmail.com.

Abbreviations: **SDS**, Sodium dodecyl sulfate; **Ct**, chitin powder; **Cc**, colloidal chitin; **Sf**, superfine; **Cb**, bead; **Ca**, amorphous.

Author(s) agree that this article remains permanently open access under the terms of the [Creative Commons Attribution License 4.0 International License](http://creativecommons.org/licenses/by/4.0/)

chitin is soluble in formic acid (Coutinó et al., 2006). Chitin chains between each other are associated with very strong hydrogen bonds between the NH groups of one chain and the C = O groups of adjacent chains. Hydrogen bonds make chitin to be insoluble in water and to form fiber (Rostinawati, 2008). The presence of chitin in nature varies abundantly and degrades rapidly, due to the presence of some bacteria and fungi that have chitinase enzyme capable of degrading chitin. Chitin can be degraded in two lines: the first is a degradation by mechanisms that hydrolyze bonds chitinolytic 1,4- β -glycosides, or polymers having first deacetylation and then hydrolysed by chitosanase (Herdyastuti et al., 2009).

Chitinases are extracellular inducible enzymes that catalyze the first step in chitin digestion, hydrolysis of β -1,4 linkages between the N-acetyl glucosamine (NAG) molecules. They are found in a variety of organisms including viruses, bacteria, fungi insects, higher plants and animals and play important physiological roles depending on their origin (Kuddus and Ahmad, 2013). Chitinolytic activity induces strain in the growth medium in the presence of chitin as a carbon source (Chernin et al., 1998).

Chitin can be modified by adding acid, base or detergents such as sodium dodecyl sulfate (SDS) for it to become swollen (Illankovan et al., 2007). The swelling of chitin powder process is expected to help the enzymatic reaction between chitinase and chitin. Possible modification of chitin-chitin can cause structural changes to become more open due to the restructuring of the chitin-chain. Possible rearrangement of chitin structure can cause changes in the functional group or the physical properties of each type of chitin compared with chitin powder.

MATERIALS AND METHODS

Preparation of chitin

Chitin was obtained from shrimp shells that have been dried and pulverized and the isolation was done by the method of Acosta et al. (1993). Chitin isolation process consists of two stages: deproteinisation and demineralization. Chitin is made into the form of colloids according to Hsu and Lockwood (1975). Chitin was dissolved in concentrated HCl (37%), and then precipitated as a colloidal suspension with the addition of cold water (5°C). The suspension was filtered and the residue was washed with distilled water until it got to neutral pH, and then dried with an oven. This process gives \pm 85% recovery.

Chitin was then prepared into colloidal, superfine, bead and amorphous form. In the colloidal form, chitin is made by adding concentrated HCl (37%). Chitin beads were obtained by dissolving in 2% formic acid and 2 M NaOH solution. Chitin amorphous was prepared by dissolving chitin in a mixed solution of 40% NaOH and 0.2% SDS (which has been cooled to a temperature of 4°C). Solution was in-swell for 1 h at 4°C and matrix slurry was stored for 1 night at -20°C temperature, and then neutralized with HCl 6 N. Furthermore, it was filtered and washed with ethanol, water and acetone. The result was dried with a freeze dryer.

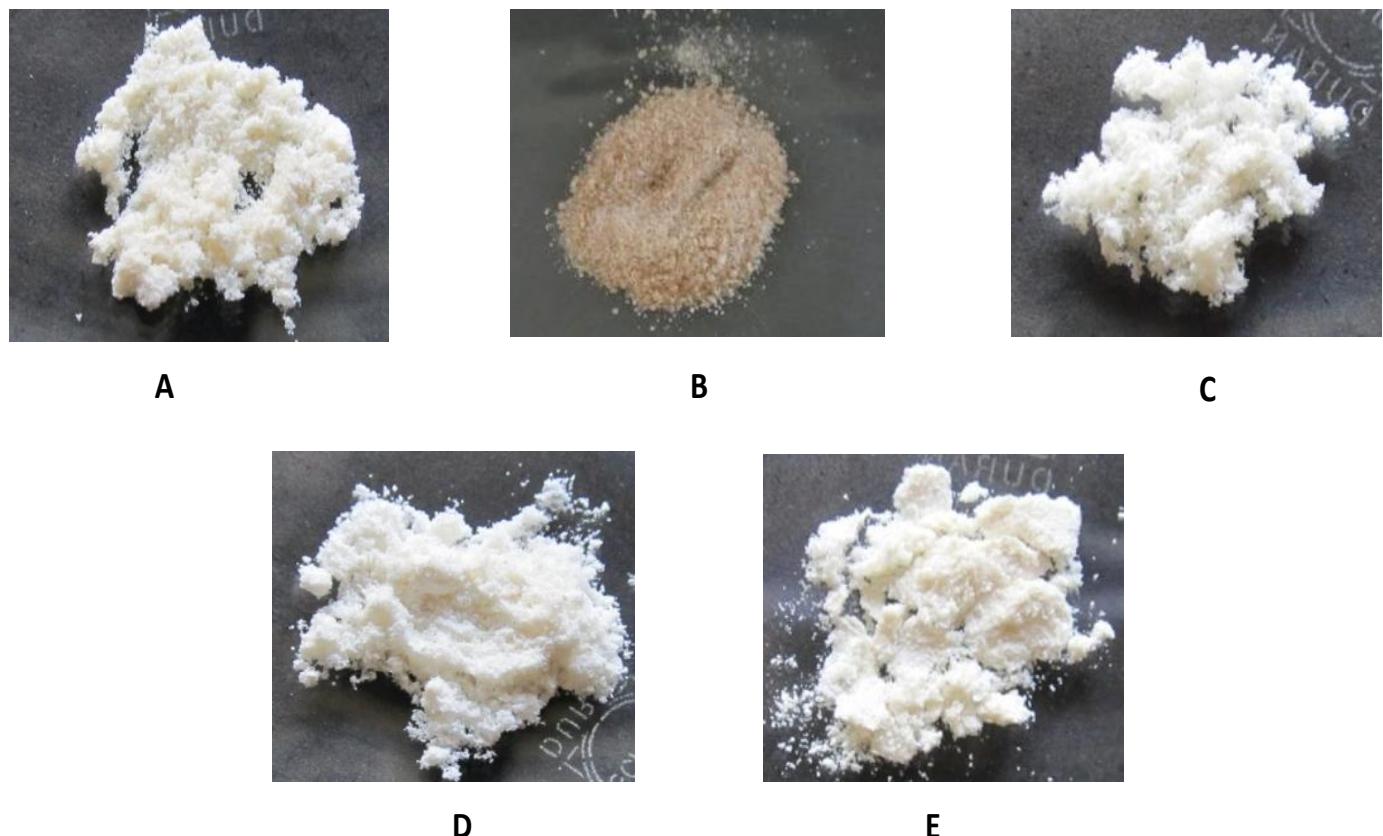
Produce of chitinase enzyme

Chitinase was produced in medium with the following composition: 0.4% chitin, 0.7% K₂HPO₄, 0.3% KH₂PO₄, 0.5% MgSO₄.5H₂O, 0.01% FeSO₄.7H₂O, 0.001% MnCl₂ and 0.5% peptone, and incubated at room temperature for 45 h in rotary shaker at 150 rpm. The culture cells were centrifuged at 4000 rpm for 20 min (4°C). The supernatant was brought to 50% saturation with ammonium sulphate at 4°C for 30 min by stirring magnetic stirrer. The precipitate was recovered by centrifugation at 4000 rpm for 30 min (4°C) and pellet formed was solubilized in 0.1 M phosphate buffer pH 7.0. The solution was dialyzed overnight against the same buffer at 4°C.

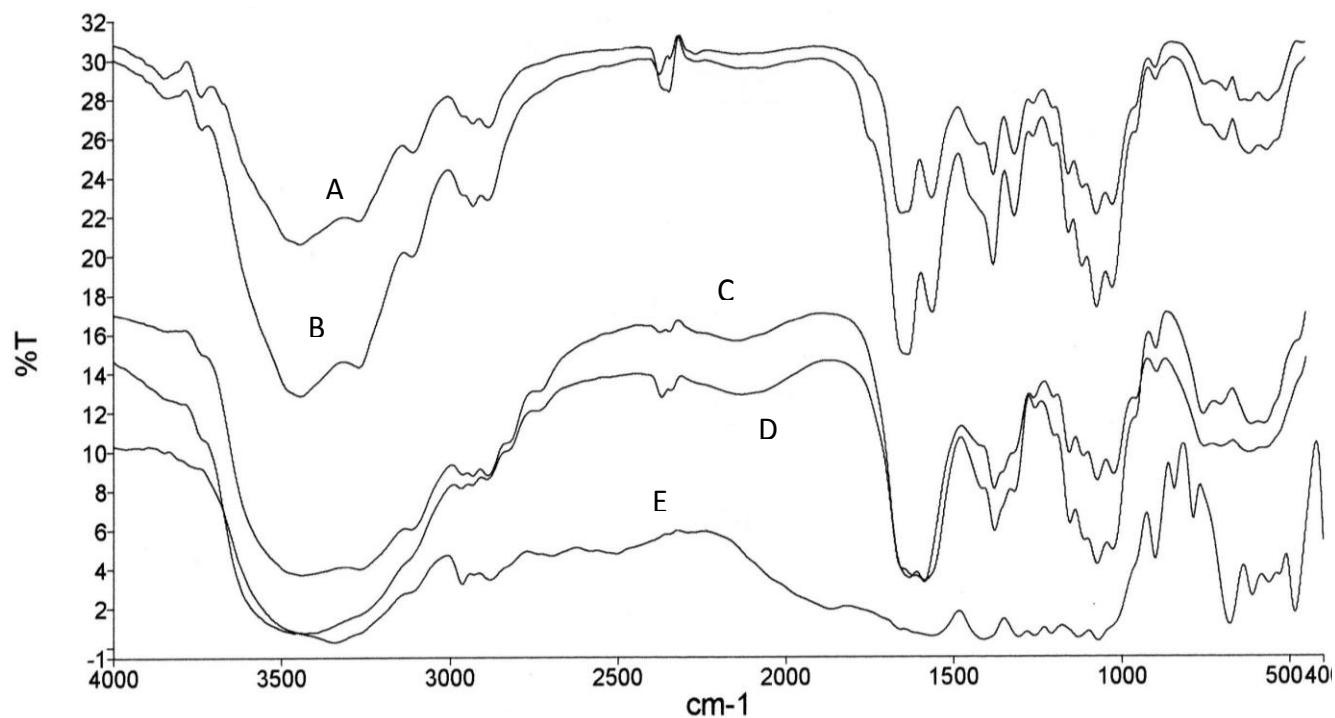
Chitinase assay

Chitinase activity was measured by colorimetric method based on the released N-acetyl-glucosamine (Monreal and Reese, 1969). The colloidal chitin solution (2.0 mL of 1.25% (w/v)) dissolved in 200 mM potassium phosphate buffer was added to 0.5 mL enzymes solution and incubated for 2 h at room temperature. The suspensions were centrifuged at 4000 rpm for 10 min and then supernatant (1.0 mL) was added to 2.0 mL deionized water and 1.5 mL color reagent (5.3 M sodium potassium tartrate and 3,5-dinitrosalicylic acid 96 mM). The mixed solution was placed in boiling water for 5 min and cooled at room temperature, and then the absorbance was measured at 540 nm. One unit (U) of chitinase activity was defined as the amount of enzyme required to release 1.0 mg N-acetyl D-glucosamine from chitin per hour.

Characterization of substrates


The structure of substrates was determined by FT-IR spectrophotometer (Perkin Elmer); the analysis of pore size and surface area was done with high speed surface area (NOVA 1200e). X-ray diffractograms were recorded by a Bruker type D 8 advance.

RESULTS AND DISCUSSION


Characteristic of chitin

Chitin that has been isolated from waste shrimp shells chitin powder (Ct) and has been modified into a kind of colloidal chitin (Cc), Superfine (Sf), bead (Cb) and amorphous (Ca) is as shown in Figure 1. Chitin was modified to have almost the same colour, smoother texture and lighter but more types of colloidal tawny color and form larger granules. The yield of the average obtained was 50 to 60%. The results of the analysis of the functional group on IR- spectrophotometer modified chitin (Figure 2) show the absorption at 3446 and 3113 cm⁻¹ (OH and NH₂ groups).

Sharp absorption peaked at 1645 cm⁻¹ indicates the presence of amide groups (N - H) and 1071 cm⁻¹ shows the group C - O. The spectra of Ca are a sharp peak in the fingerprint region below 700 cm⁻¹ which is not found in other types of chitin. Spectra of superfine showed similarity with the IR spectra of chitin and colloidal chitin. The characteristic peaks of chitin are -OH group (3433 cm⁻¹), -NH (amide) at 1587.54 cm⁻¹, CH bending vibration

Figure 1. (A) Powder chitin. (B) Colloidal chitin. (C) Superfine chitin. (D) Amorphous chitin. (E) Bead chitin.

Figure 2. Spectra-IR of (A) Powder chitin, (B) Colloidal chitin, (C) Superfine chitin, (D) Bead chitin and (E) Amorphous chitin.

Table 1. The relevant peak FT-IR spectra of chitin substrates.

Function group	Wave number (cm ⁻¹)				
	Ct	Cc	Sf	Cb	Ca
C – O	1379	1380	1379	1379	1308
N – H (bending)	1562	1635	1567	1567	-
C – H (stretching)	2886	2931	-	-	2963
C = O	1651	1635	1633	1633	-
O – H	3446	3446	3435	3435	3345

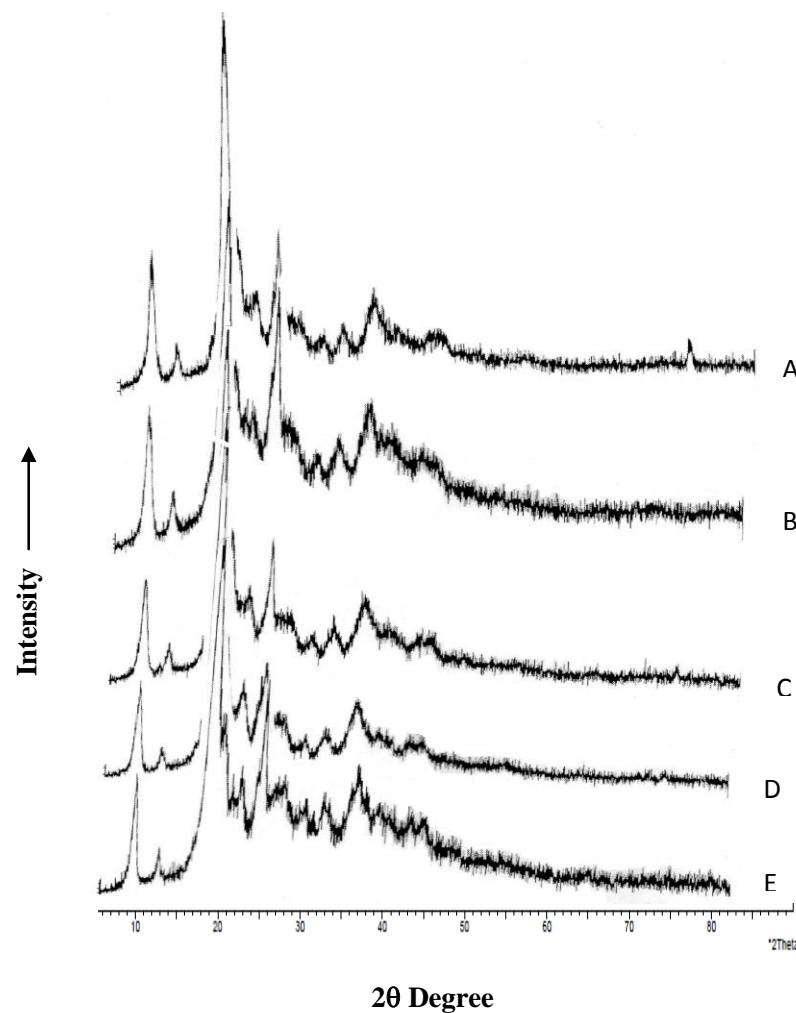
Ct, Powder chitin; Cc, colloidal chitin; Sf, superfine chitin; Ca, amorphous chitin; Cb, bead chitin.

Table 2. Analysis of physical characteristic in the chitin substrates.

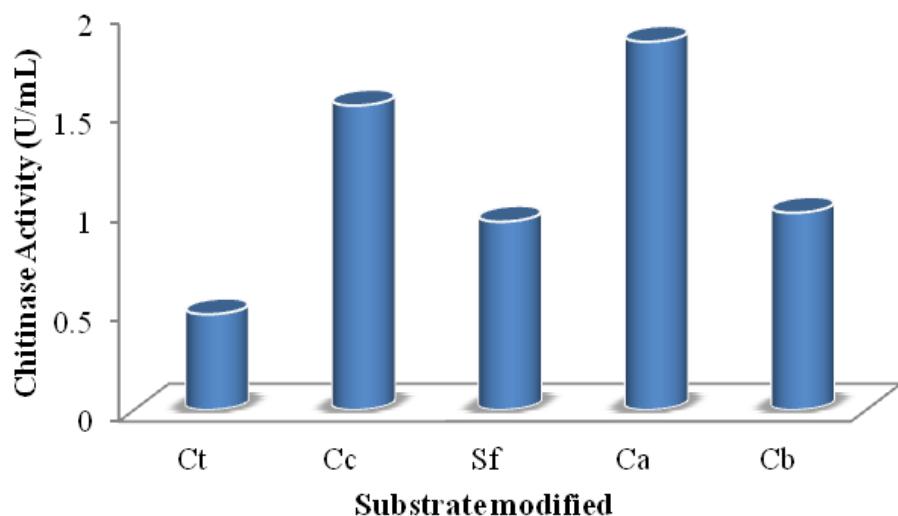
Substrate	Pore radius (A°)	Pore area (m ² /g)	Pore volume (cc/g)
Powder chitin	19.108	1.365	4.00 x 10 ⁻²
Colloidal chitin	19.044	2.780	5.00 x 10 ⁻²
Superfine chitin	162.879	0.06	0,0001
Amorphous chitin	19.159	3.252	1.30 x 10 ⁻²
Bead chitin	19.011	0.606	4.00 x 10 ⁻³

at 1378.7 cm⁻¹, stretching vibration of C = O, amide - NHCOCH₃ (1633.1 cm⁻¹) and CO alcohol at 1072.9 cm⁻¹ (Tamimi and Herdyastuti, 2013). Table 1 shows the amides that generate elimination of carboxyl groups (Coutinó et al., 2006).

The results of the analysis based on the physical properties of pore size and surface area of powder, colloidal, superfine, amorphous and bead chitin are shown in Table 2. The results of the analysis showed that treatment of swelling on each type of chitin changed pore radius and became larger. Data show pore radius of superfine chitin is 9 times greater than the powder chitin. Wide pores of colloidal chitin also increased, but the chitin beads were apparently amorphous and their volume was reduced. The changes of volume size and pore radius would affect the interaction of enzymes with the substrate.


Diffractogram of chitin powder, colloidal and bead shows the same pattern. There are 3 main peaks 2θ of 9.5, 19.5 and 26; the intensity tends to be weaker in colloidal and bead chitin than in powder chitin as shown by the studies of Illankovan et al. (2007), in which the diffractogram of powder, colloidal and amorphous chitin had main peak of 2θ of 9.4 and 20.

This shows that colloidal and bead chitin has a lower degree of crystallinity than chitin powder. Swelling process in colloidal and bead chitin causes larger pores and is easily inflated in water medium; this leads to the easy interaction of enzymes with substrates than in the form of chitin powder, which is more compacted (Figure 3).


relevant peak FT-IR spectra of chitin substrates. The other research shows that chitin has -NH peak at 3269, 1663 and 1629 cm⁻¹ due to the reduction of primary

Chitinase activity

Chitin from crab shell is identified as the best carbon source and colloidal chitin is reported as the best source for producing chitinase. The results show the highest activity for the amorphous chitin after colloidal chitin types (Figure 4). Suraini et al. (2008) reported that the highest specific activity produced by colloidal chitin was 14.59 U/mg. Chitinase from *Paenibacillus* sp. D1 showed that the highest activity was 35 U/mL at 30°C after 72 h (Singh, 2010). The results of optimization of culture nutrients revealed that the amount of colloidal chitin as a sole carbon source in the growth medium of *Trichoderma viride* was 32.1 U/mL (Sharaf et al., 2012). By optimizing the above cultural conditions, the production of chitinase from *Bacillus amyloliquefaciens* SM3 increased by three fold to 33.5 U/mL at the final stage (Das et al., 2012). This form of chitin is tight due to its anti-parallel chain form and it stabilizes polymorphism shape naturally causing chitin not to dissolve in the solvent (Majtán et al., 2007). Modified chitin using SDS detergent leads to swelling of chitin structure causing changes in the physical properties of chitin powder. Amorphous type chitin has fingers longer than other types of chitin and three times larger area than the chitin powder. The data indicate that amorphous chitin is more open and more

Figure 3. Diffractograms of powder chitin (A), colloidal chitin (B), amorphous chitin (C), bead chitin (D) and superfine chitin (E).

Figure 4. Chitinase activity with substrate types. Ct, Powder chitin; Cc, colloidal chitin; Sf, Superfine chitin; Ca, amorphous chitin; Cb, bead chitin.

likely to facilitate interaction with chitinase that can provide higher chitinase activity than other substrates. Ilankovan (2005) reported that among the chitinolytic activities of the commercial enzymes investigated with amorphous chitin as substrate, the bovine pepsin had the highest chitinolytic activity.

Conclusion

Modification of chitin by adding detergents causes characteristic changes in its physical properties and the structure becomes more open than chitin powder, thus causing its interaction with the enzyme chitinase. Amorphous chitin can be used as an alternative substrate or inducer for chitinase enzyme indicated by higher chitinase activity than using chitin powder.

Conflict of interests

The authors did not declare any conflict of interest.

ACKNOWLEDGEMENTS

The research was supported by Ditlitabmas, DP2M-DIKTI, National Education Department of Indonesia. We are also grateful to Mizan Tamimi and Adi Wirawan who indeed rendered assistance in this research.

REFERENCES

Acosta N, Jimenez C, Bora V, Heras A (1993). Extraction and characterization of chitin from crustaceans. *Biomass Bioenergy* 5:53.

Chernin LS, Winson MK, Thompson JM (1998). Chitinolytic Activity in *Chromobacterium violaceum* : Substrat analysis and regulation by quorum sensing. *J. Bacteriol.* 180: 17.

Coutin˜o LR, Mari˜a del Carmen MC, Huerta S, Revah S, Shirai K, (2006). Enzymatic hydrolysis of chitin in the production of oligosaccharides using *Lecanicillium fungicola* chitinases. *Process Biochem.* 41: 1106–1110.

Dai DH, Wei-lian H, Guang-rong H, Wei L (2011). Purification and characterization of a novel extracellular chitinase from thermophilic *Bacillus* sp. Hu1. *Afr. J. Biotechnol.* 10:2476-2485.

Das MP, Rebecca LJ, Sharmila S, Anu, Banerjee A, and Kumar D (2012). Identification and optimization of cultural conditions for chitinase production by *Bacillus amyloliquefaciens* SM3. *J. Chem. Pharm. Res.* 4(11):4816-4821

Guo SH, Chen JK, Lee WC (2004). Purification and Characterization of Extracellular Chitinase From *Aeromonas schubertii*. *Enzyme Microb. Technol.* 35: 550-556.

Herdystuti N, Raharjo TJ, Mudasir, Matsjeh S (2009). Kitin dari limbah cangkang udang sebagai media untuk bakteri kitinolitik yang diisolasi dari lumpur sawah, *Jurnal Manusia dan Lingkungan*. 16 : 115-121

Hsu SC, Lockwood JL (1975). Powdered Chitin Agar As a Selective Medium for Enumeration of Actinomycetes in Water and Soil. *Appl. Microbiol.* 29:422-426.

Ilankovan P, Hein S, Chuen-How Ng, Trung TS, Stevens WF (2005). Production of N-acetyl chitobiose from various chitin substrates using commercial enzymes. *Carbohydr. Polym.* 63(2):245-250.

Kuddus SM, Ahmad RIZ (2013). Isolation of novel chitinolytic bacteria and production optimization of extracellular chitinase. *J. Genet. Eng. Biotechnol.* 11:39-46

Majtán J, Blíliková K, Markovic O, Gróf J, Kogan G, Simúth J (2007). Isolation and characterization of chitin from bumblebee (*Bombus terrestris*). *Int. J. Biol. Macromol.* 40:237-241

Monreal J and Reese, ET (1969). The Chitinase of *Serratia marcescens*. *Can. J. of Micro.*, 15:689-696.

Rostinawati T (2008). Skrining dan Identifikasi Bakteri Penghasil Enzim Kitinase dari Air Laut di Perairan Pantai Pondok Bali. *Jatinagor: Universitas Padjajaran*.

Sharaf EF, El-Sarrany AEQ, El-Deeb M (2012). Biorecycling of shrimp shell by *Trichoderma viride* for production of antifungal chitinase. *Afr. J. Microbiol. Res.* 6(21):4538-4545

Singh AK (2010). Optimization of culture conditions for thermostable chitinase production by *Paenibacillus* sp. D1. *Afr. J. Microbiol. Res.* 4: 2291-2298

Suraini AA, Sin TL, Alitheen N, Shahab N, Kamaruddin K (2008). Microbial Degradation of Chitin Materials by *Trichoderma virens* UKM1. *J. Biol. Sci.* 8:52-59

Tamimi M, Herdyastuti N (2013). Analysis functional groups using FT-IR spectroscopy of chitin variation as *Pseudomonas* sp. TNH-54 substrate's. *UNESA J. Chem.* 2:47-51.